psychomotor retardation

Psychomotor retardation

Psychomotor retardation comprises a slowing down of thought and a reduction of physical movements in a person. Psychomotor retardation is most commonly seen in people with clinical depression where it indicates a degree of severity 1), 2). Psychomotor retardation has repeatedly been denoted as an important marker of the melancholia subtype of depression 3), and as a predictor for treatment response to several types of antidepressant treatment 4).

Correlation analyses between motor signs and severity of depression indicate that some aspects of psychomotor retardation are related to state changes in depression 5). This notion is supported by positive effects of pharmacological treatments, leading to changes in depression rating scale scores significantly correlated with changes in motor performances Volkers et al. 6). However, other findings suggest that some components of motor retardation are trait characteristics in depression. For example, Caligiuri and Ellwanger 7) found specific abnormalities on a velocity scaling measure in bipolar depressed patients, compared with unipolar patients. To date, the data available provide arguments in favour of the two hypotheses, and this question still remains to be investigated.

Psychomotor retardation can also be present in different neuropsychiatric disorders, including schizophrenia or Parkinson’s disease 8). For instance, experimental comparisons between depressive and schizophrenic patients have shown a different slowing structure, with a slowness in both motor and cognitive components in depressed patients, whereas the schizophrenic patients only exhibited a slowness in the cognitive component 9). Similarly, patients with depression exhibit difficulties initiating movements in the absence of external cues, as patients with Parkinson’s disease. Slowed motor activity and difficulties in self-initiating movements, common to melancholic depression, negative symptoms in schizophrenia, and Parkinson’s disease, may reflect dysfunction within frontostriatal circuits 10). People with psychomotor retardation can sometimes be mistaken as having dementia. Psychomotor retardation can require increased nursing care to ensure adequate food and fluid intake as well as self-care. Informed consent for treatment is more difficult to achieve when this is present.

Psychomotor retardation has been characterized as a major feature of major depressive disorder since antiquity 11). Hippocrates and Aretaeus of Cappadocia both described psychomotor retardation as a characteristic of depression 12). Darwin also discussed visible psychomotor symptoms and depressed patients who “no longer wish for action but remain motionless and passive, or may occasionally rock themselves to and fro” 13). In the proceeding decades, authors such as Kraepelin expanded on psycho-motor retardation, building upon the knowledge of this noteworthy phenomenon by describing how it was more prominent than depressed mood and involved constrained speech, thought, and behavior 14).

Descriptions of psychomotor retardation have remained consistent in the literature; most portrayals of depressive symptomatology emphasised disturbances in speech, facial expression, fine motor behaviour, gross locomotor activity, or ideation 15). Since the end of the 20th century, several authors have argued that the presence of clinical psychomotor retardation allows determining clinically meaningful depressive subtypes (melancholic with and without psychotic features, bipolar and unipolar disorders) 16). Other authors have proposed that motor retardation reflects a fundamental dimension of depression 17). Moreover, motor disturbance in depression may indicate an underlying neuropathology and could be relevant in the context of therapeutic interventions 18). Although psychomotor disturbances are included in most diagnostic systems and probably have prognostic and pathophysiological significance, explicit definitions of psychomotor phenomena remain elusive 19). In order to specify the significance of psychomotor symptoms across the full spectrum of depressive disorders, experimental methods investigating motor and cognitive components of psychomotor retardation have been developed. Objective psychomotor assessments may improve classification, longitudinal monitoring, treatment selection, and prediction of outcome in patients with depression.

Psychomotor retardation causes

Psychomotor retardation is most commonly seen in people with clinical depression where it indicates a degree of severity 20), 21). Psychomotor retardation has repeatedly been denoted as an important marker of the melancholia subtype of depression 22).

Psychomotor retardation other causes include:

  • Psychiatric disorders – schizophrenia, severe depression, bipolar disorder, etc.
  • Psychological disorders – eating disorders, mood disorders, anxiety disorders, etc.
  • Psychiatric medicines (if taken improperly, overdosed, or mixed with alcohol)
  • Parkinson’s disease

Psychomotor retardation symptoms

Psychomotor retardation involves a slowing-down of thought and a reduction of physical movements in an individual. Psychomotor retardation can cause a visible slowing of physical and emotional reactions, including speech and affect. These symptoms may severely impact patient’s psychosocial functioning 23) and are closely linked with severity of depression 24).

Examples of psychomotor retardation include the following:

  • Unaccountable difficulty in carrying out what are usually considered “automatic” or “mundane” self-care tasks for healthy people (i.e., without depressive illness) such as taking a shower, dressing, self-grooming, cooking, brushing one’s teeth and exercising.
  • Physical difficulty performing activities which normally would require little thought or effort such as walking up a flight of stairs, getting out of bed, preparing meals and clearing dishes from the table, household chores or returning phone calls.
  • Tasks requiring mobility suddenly (or gradually) and inexplicably seem to be “impossible”. Activities such as shopping, getting groceries, caring for the daily needs of one’s children and meeting the demands of employment or school are commonly affected.
  • Activities usually requiring little mental effort can become challenging. Balancing one’s checkbook, making a shopping list or making decisions about mundane tasks (such as deciding what errands need to be done) are often difficult.

In schizophrenia, activity level may vary from psychomotor retardation to agitation; the patient will experience periods of listlessness and may be unresponsive, and at the next moment be active and energetic 25).

Psychomotor retardation treatment

Several studies suggest that psychomotor retardation measures may provide prognostic information concerning antidepressant response. The results of clinical rating suggest that psychomotor retardation can be used as marker for antidepressant response. Flament et al. 26) found that their patients with motor retardation responded less favourably to 6 weeks of fluoxetine or sertraline treatment compared to nonmotor retarded sample of patients. Sechter et al. 27) found that baseline retardation predicted a response to milnacipran. Similarly designed studies found that psychomotor retardation failed to predict a response to selective serotonin reuptake (SRRI). Experimental assessments of psychomotor retardation support his predictive value. In an open-treatment medication study, Caligiuri et al. 28) demonstrated that a quantitative measure of motor programming may be a useful predictor of antidepressant nonresponse. Concerning information processing speed, Dunkin et al. 29) found that patients whose symptoms did not remit following 8 weeks of fluoxetine treatment had impaired baseline pretreatment functioning. Conversely, Taylor et al. 30) suggest a deficit in psychomotor speed distinguishing SSRI nonresponse.

The impact of different pharmacological treatments on motor symptoms in depressed patients was examined using clinical scales or experimental assessment. Ferguson et al. 31) combined the data of 4 clinical studies and found a significant improvement of psychomotor retardation in patients following 4 weeks of reboxetine treatment. In their meta-analysis, Entsuah et al. 32) reported beneficial effects of venlafaxine. The preferential efficacy of venlafaxine for psychomotor retardation symptoms was recently supported by Singh et al. 33) in a study comparing the clinical effects of venlafaxine and escitalopram in major depressive disorder. Comparing clinical response, Del Zompo et al. 34) observed that minaprine was more effective than tricyclic antidepressant on psychomotor retardation in depressed patients. Assessing the therapeutic efficacy of various antidepressants (minaprine, amineptines and clomipramine), Rampello et al. 35) obtained convergent results. In a double blind study, Bondareff et al. 36) observed similar response rate to sertraline and nortriptyline while Navarro et al. 37) found a better response rate for nortriptyline than citalopram in an elderly depressed patient. In addition, Sabbe et al. 38) found that the effect of fluoxetine on the motor components of drawing were relatively low. Unfortunately we failed to find available data on effects of psychotherapy on psychomotor retardation.

The latency of action of antidepressive medications or their contraindication justifies the use of electroconvulsive therapy (ECT) in first intention in severe depressive states where the prognosis is committed. Joining the notion of severity, depressions with delusions and those with catatonic symptoms are preferential indications of ECT, as well as melancholic depression, due to gravity or clinical criteria. The analysis of the association of specific symptom profiles with ECT outcome indicates that the psychotic feature, older age, and psychomotor disturbances were predictive of greater response 39).

A combined analysis of randomized controlled trials of ECT versus simulated ECT showed that real ECT had a therapeutic advantage, specifically among patients with retardation and/or delusions 40). Nevertheless, in 2 randomized controlled trials, involving 148 patients, Sobin et al. 41) investigated the utility of depression subtypes in predicting ECT response and concluded that ECT was a treatment option for patients with major depression; however, neither the presence of psychotic features, retardation, and/or agitation predicted superior response.

More responsible for the variation of results among studies on ECT can be, respectively, the number of ECT sessions applied, the methodological weakness of some studies that did not specify the electrical parameters of the bilateral ECT and/or unilateral ECT.

Only four studies have investigated whether High-Frequency repetitive transcranial magnetic stimulation (HF-rTMS) treatments affect psychomotor symptoms 42). Baeken et al. 43) did not report any significant relationship between psychomotor symptoms and clinical response. Moreover they observed a reduction of psychomotor disturbances after the treatment, independent of age, sex, and duration of illness. Hoppner et al. 44) obtained convergent results, with a reduction of the score on the Motor Agitation and Retardation Scale (MARS) scale after treatment. In a sample of severely depressed patients, Ullrich et al. 45) reported a significant improvement of processing speed performance, which covaried with the improvement of psychomotor retardation, after 3 weeks of ultrahigh frequency repetitive transcranial magnetic stimulation.

Concerning behavioural facilitatory effects of transcranial direct current stimulation (tDCS), Loo et al. 46) failed to predict the antidepressant response using the CORE measure in two subsequent studies. However, they obtained positive results on depressive symptomatology, with a greater reduction in MADRS scores after real versus sham stimulations after applying 15 sessions of anodal transcranial direct current stimulation at 2 mA to 64 unipolar and bipolar depressed patients 47).

References   [ + ]